Dietary protein and bone health: a systematic review and meta-analysis^{1–3}

Andrea L Darling, D Joe Millward, David J Torgerson, Catherine E Hewitt, and Susan A Lanham-New

ABSTRACT

Background: There has been a resurgence of interest in the controversial relation between dietary protein and bone health.

Objective: This article reports on the first systematic review and meta-analysis of the relation between protein and bone health in healthy human adults.

Design: The MEDLINE (January 1966 to September 2007) and EMBASE (1974 to July 2008) databases were electronically searched for all relevant studies of healthy adults; studies of calcium excretion or calcium balance were excluded.

Results: In cross-sectional surveys, all pooled r values for the relation between protein intake and bone mineral density (BMD) or bone mineral content at the main clinically relevant sites were significant and positive; protein intake explained 1–2% of BMD. A meta-analysis of randomized placebo-controlled trials indicated a significant positive influence of all protein supplementation on lumbar spine BMD but showed no association with relative risk of hip fractures. No significant effects were identified for soy protein or milk basic protein on lumbar spine BMD.

Conclusions: A small positive effect of protein supplementation on lumbar spine BMD in randomized placebo-controlled trials supports the positive association between protein intake and bone health found in cross-sectional surveys. However, these results were not supported by cohort study findings for hip fracture risk. Any effects found were small and had 95% CIs that were close to zero. Therefore, there is a small benefit of protein on bone health, but the benefit may not necessarily translate into reduced fracture risk in the long term. *Am J Clin Nutr* 2009;90:1674–92.

INTRODUCTION

The bone disease osteoporosis is becoming epidemic, with 1 in 4 women >70 y of age having at least one fracture in their lifetime (1). The incidence of osteoporosis is likely to worsen, and an increase in hip fracture rates to 6.62 million per year is predicted by 2030 (2). The increasing burden of osteoporosis globally means modifiable factors such as nutrition have become of larger importance.

There is a requirement for amino acid precursors from dietary protein to maintain bone structure. In addition, the anabolic drive of amino acids on the organism includes an influence on bone mediated in part through the stimulation of growth factors such as insulin-like growth factor I (IGF-I) (3). IGF-1 has been suggested to increase bone mass by increasing osteoblast activity and may also increase the mineralization of bone matrix (4) in part by increasing calcium absorption (5). Therefore, an inadequate anabolic drive due to insufficient dietary protein (6) may decrease bone strength through adverse changes in bone microarchitecture (7). This indicates a need for adequate protein intakes for both the elderly and the general population to help optimize bone health. However, the balance between beneficial and detrimental influences of dietary protein on bone health is a long-standing debate (8–11). Dietary protein is a major contributor to acid production (12) as a result of the oxidation of the sulfur amino acids, and declining pH values influence the balance between osteoblastic and osteoclastic activity (13) and increases urinary calcium excretion (14).

Because protein is a modifiable factor in osteoporosis prevention, dietary protein clearly has a role in bone health. However, to our knowledge, the evidence to date has not been systematically reviewed. Therefore, we conducted a systematic review and meta-analysis of the effect of protein intake on indexes of bone mineral density (BMD), bone turnover, and fracture risk and present the results herein.

METHODS

Search strategy

We conducted a systematic search of the MEDLINE (http:// www.ncbi.nlm.nih.gov/pubmed/) and EMBASE (http://www. embase.com/home) databases. The MEDLINE database (January 1966 to September 2007) was searched via PubMed. The EMBASE database (1974 to July 2008) was also searched to ensure broad coverage. The search phrase used for both searches was "(protein intake OR dietary protein OR protein supplement OR protein consumption) AND (bone OR fracture OR BMD OR bone turnover)" limited to human studies written in the English language and from 1975 to the present day. Articles that

Received March 19, 2009. Accepted for publication September 10, 2009. First published online November 4, 2009; doi: 10.3945/ajcn.2009.27799.

¹ From the Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom (ALD, DJM, and SAL-N), and the Department of Health Sciences, University of York, York, United Kingdom (DJT and CEH).

² ALD was awarded the 2009 Young Investigator Award at the UK Osteoporosis Conference, Manchester, June 2009, for this work and was a 2008 UK Science, Engineering and Technology Finalist.

³ Address correspondence and reprint requests to AL Darling, Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom. E-mail: a.darling@surrey.ac.uk.

were >30 y old were excluded if the details provided in the publications did not provide sufficient details of the results for this meta-analysis. Two of the authors (AD and SLN) screened titles and abstracts to identify potentially eligible studies. Any disagreements were resolved by consensus or deferred to a third party, if necessary. Full papers for potentially eligible studies were obtained and assessed for inclusion independently by 2 of the authors (ALD and SAL-N).

Study eligibility criteria

All studies of any design reporting influences of any protein type on BMD or bone mineral content (BMC), bone turnover, and fracture risk in healthy human adults were considered for inclusion in the review. Studies investigating subjects with a preexisting medical condition (including obesity), children, and pregnant or lactating women were excluded, as were studies involving only indirect measures of bone health such as calcium balance or metabolism. Supplementation trials were not excluded on the basis of the type of control used, the duration of the trial or the dose of protein in the experimental group. The exception to this was that studies using milk basic protein (MBP) as a control treatment were excluded because in these trials the dosage of protein was the same in the experimental and control groups. Crossover supplementation trials were included in the qualitative review but were excluded from the meta-analysis.

Data extraction

For the tables of characteristics, relevant information (ethnicity, age, sex, and protein intake) about the populations studied was extracted. Protein intake was expressed in $g \cdot kg^{-1} \cdot d^{-1}$ by dividing mean total daily protein intake by mean weight (kg) of the participants. If no weight was available, mean intakes (g/d) or the ranges of intake (g/d) were extracted. For qualityassessment purposes, data on potential confounders as well as drop-out rates and methods of dietary assessment were extracted.

When data on study outcomes were extracted, multivariateadjusted analyses were used wherever possible in preference over crude or age-adjusted measures. For the cross-sectional surveys, the correlation coefficients (r), n (number of participants) values, and P value were extracted for each outcome. In the cohort studies, any relevant data were extracted, such as percentage change in bone mass over time, means and SDs, or r coefficients for the slope of bone loss in different protein intake groups. Also, odds ratios (ORs) or the relative risk of fracture estimates (with 95% CIs) for the highest and lowest quartiles or quintiles of intakes for cases were also extracted, with n and P if available.

For each of the supplementation trials, the mean, SD, and *n* for follow-up measurements were extracted for each relevant outcome in each arm of the study. If SEMs were presented, they were converted to SDs by using the standard formula (SEM = SD/\sqrt{n}). One soy protein supplementation trial (15) had 2 experimental groups, so the low-isoflavone group was chosen for comparison with the control group. Only follow-up data were extracted because it was assumed that participants were randomized at baseline.

All 29 authors of relevant articles with missing data were contacted. Replies were received from 16 authors, with 8 authors

being able to provide the requested data. The other 8 authors were not able to provide data because the data were not available. The articles not providing complete data (ie, not able to calculate the SD or the SEM) were not able to be included in the meta-analysis. These articles with incomplete data were therefore included in the analysis in a qualitative form only. Therefore, no articles were excluded from the whole review simply for having incomplete data.

Data synthesis

All studies were analyzed qualitatively, and the studies with suitable data were also analyzed quantitatively. Microsoft Excel (16) was used for pooling r coefficients, and RevMan version 4.2 (17) was used for the meta-analyses.

Pooling of correlation coefficients

From the cross-sectional surveys, the *r* values were pooled by bone site (BMD and BMC) or by bone marker and were then repooled by population subgroup (men, premenopausal women, and postmenopausal women).

To calculate pooled values, all r values were transformed by using Fisher's z transformation and then weighted by using the standard formula (18). They were then inverse Fisher transformed to give the pooled $r(r_p)$ values; 95% CIs were calculated by using a standard formula (mean \pm 1.96 SD). This gave a pooled r value with a 95% CI for each BMD and BMC site, bone marker, or population subgroup. Levels of heterogeneity of pooled r values were calculated by using the chi-square statistic.

Meta-analysis

For the meta-analysis, results could only be pooled when there were ≥ 2 studies looking at the same outcome within protein type. For example, there were not enough studies to assess forearm fracture risk. This is because there was only one study assessing forearm as an outcome, unlike hip fracture, for which there were >2 studies. Also, for the fracture meta-analysis, separate analyses were made for each protein type (total, animal, and vegetable), but not all protein types were analyzed together.

The meta-analysis of the supplementation trials examined the main effects for protein supplementation on lumbar spine BMD. Only lumbar spine BMD was used in the meta-analysis of the supplementation trials because there were not enough compatible studies to assess other bone sites. The analysis for protein intake and lumbar spine BMD assessed all protein types, including MBP. Soy studies were not included here because protein dose was not varied between experimental and control groups. A separate soy analysis was therefore run to compare soy protein (experimental group) with nonsoy protein (control group).

In addition, a separate comparison was also made for the effect of MBP and lumbar spine BMD. Not enough studies examining animal or vegetable protein separately that satisfied the search strategy were identified to justify a separate analysis. It was not possible to run a meta-analysis for BMC and for bone markers and all protein because there were not enough studies.

Heterogeneity, sensitivity, and publication bias-meta-analysis

The I^2 statistic was used to assess heterogeneity between studies because this is more effective than the chi-square

密

statistic when small numbers of studies are included in metaanalyses (19). As suggested by Higgins et al (19), I^2 values of 25%, 50%, and 75% were considered low, moderate, and high, respectively. Random-effects (heterogeneous comparisons) and fixed-effects (homogenous comparisons) models were used accordingly. Weighted mean differences were used throughout (BMD and fracture risk). Unfortunately, the numbers of studies in the meta-analysis were too small to assess publication bias.

Quality analysis

Because there is no clearly defined method for assessing the quality of cross-sectional surveys and cohort, case-control, and ecologic, and nonrandomized comparative trials, this was done subjectively by one author (ALD). The randomized placebocontrolled trials were assessed for quality by using the CONSORT statement checklist (20) by one author (ALD). Scales relating to randomization and to concealment and blinding (CONSORT items 8–11) were used to assess study quality because these have been found to be linked to estimates of effect size and risk of bias (21).

RESULTS

The QUORUM (quality of reporting of meta-analyses) flow diagram (22), showing the flow of articles through the selection process, is shown in **Figure 1**. Sixty-one studies were included in the systematic review, including 31 cross-sectional surveys, ecologic and cohort studies, and 19 supplementation trials examining BMD, BMC, or bone markers. Also included were 11 cohort and case-control studies examining fracture risk.

BMD, BMC, and bone markers

Thirty-one cross-sectional surveys examining BMD, BMC, and bone markers were included in the systematic review (**Tables 1** and **2**): 22 studies from Western countries (United States, Australia, Europe, and Canada), 8 from Asian countries (Japan, Taiwan, and China), and 1 from Brazil. Of these, 23 were studies of women alone (with 6 pre-, 9 post-, and 8 pre- and post-menopausal), 4 of men alone, and 4 of men and women. Most studies examined total protein (n = 30), but one study examined soy and total protein (31).

Study quality

In terms of dietary assessment methods, 11 studies (25, 27, 30, 34, 37, 45–47, 49, 50, 52) used food-frequency questionnaires (FFQ), with most FFQs being previously validated. Thirteen studies used dietary records (24, 26, 28, 29, 31–33, 35, 38, 41, 43, 44, 53). Of these, 3 (28, 31, 41) clearly stated this was a weighted method, although most studies using nonweighted measures made efforts to use food models or photos to enable more accurate estimation by the participants. The final 7 studies used either recall methods (36, 40), other questionnaires (42, 48), or a mixture of recall and FFQs (23, 51) or a duplicate-portion method (39).

For the 12 studies reporting r values that were pooled, it was not clear whether confounders had been adjusted for (23, 25, 29, 31, 36, 39, 40, 43, 46, 48). Only 5 studies (24, 33, 35, 38, 50) clearly reported adjustment for at least one relevant confounder

such as age, body weight or BMI, physical activity, or energy intake.

Some studies in the qualitative analysis only reported regression analyses and these were adjusted for at least one confounder (27, 30, 32, 37, 42, 45, 47, 49). For those that reported correlations, adjustment for at least one confounder was present in one study (41) but not another that mentioned crude correlation only (34). Last, 3 (44, 52, 53) of the 4 (44, 51–53) studies looking at percentage change in BMD adjusted for at least one confounder in the analysis.

Potential bias could arise from the use of volunteers in 7 of the studies (28, 29, 35, 37, 45, 46, 48). Potential confounders may include other aspects of the diet or lifestyle that may influence bone health (eg, phosphorus, calcium, sodium, potassium, latitude, sun exposure, smoking, alcohol, educational attainment, socioeconomic status, and physical activity) in addition to physiologic variables such as BMI, age, menopausal status, and effects of chronic conditions or medications.

BMD

Overall, there was very little evidence of a deleterious influence of protein intake on BMD, with most cross-sectional surveys and cohort studies reporting either no influence or a positive influence. Thus, 15 cross-sectional surveys found a statistically significant positive relation between protein intake and at least one BMD site (24, 25, 27–33, 37, 38, 42, 44, 46, 50). However, 18 studies found no significant correlation between protein intake and at least one BMD site (23, 24, 26–28, 30, 33– 38, 42–44, 46–48).

The cohort studies also identified little evidence of any deleterious influence of protein intake on bone. Thus, of those studies reporting *r* values or percentage BMD loss as a function of protein intake, no studies showed a significant increase in BMD loss with increased protein intake, and only one study showed a significant decrease in BMD loss with increased animal and total protein intakes (52). However, 3 studies found no correlation between protein intake and bone loss at one or more sites (26, 44) or that protein intake was not a significant predictor of BMD (51). In the only study examining mean BMD (53), subjects with a higher mean protein intake had a significantly higher mean femoral neck BMD than did those with a lower mean intake.

ВМС

For BMC, 4 cross-sectional surveys found a positive correlation between protein intake and BMC for at least one site (30, 37, 43, 47), whereas 2 found no significant correlation (26, 34). Only one survey found a significant negative correlation between protein intake and BMC (37).

Ultrasonic measures

Most cross-sectional surveys examining ultrasonic measures of bone density have found a positive (25, 27, 45, 49) correlation or no correlation (41) between total protein intake and BMD at the phalanges or at the calcaneus. Only one survey (49) reported a negative correlation for total protein and BMD, which was at the calcaneus.

密

DIETARY PROTEIN AND BONE HEALTH

Bone markers

The cross-sectional surveys provided little evidence of any influence of protein intake on bone markers. Thus, the 4 studies of markers of bone formation (31, 38, 39, 44) and 3 studies of markers of bone resorption (31, 39, 44) reported no significant correlation with protein intake, and only one study reported a significant (positive) correlation with markers of bone resorption (31).

Pooled correlation coefficients

Eighteen cross-sectional surveys gave r correlation coefficients suitable for pooling (40, 23–26, 28, 29, 31, 33, 35, 36, 38, 39, 43, 44, 46, 48, 50). These r correlation coefficients were pooled by population subgroup (**Table 3**) and then by outcome type (**Table 4**) as described in Tables 1 and 2. All pooled values for population subgroups and for outcome type were positive, except for ulna BMC, deoxypyridinoline, and hydroxyproline.

TABLE 1 Characteristi

-	È
	ea.
-	ž
	a
	8
-	and
	9
5	tă
	Ξ
•	tein
	DIO
6	5
:	dies
	stu
	Ħ
-	g
	<u></u>
	and
	SS
	ž
	Su
-	
	Ö
•	Ē
	š
	-ss
	ñ
ç	ž
	s
	ë
	õ
	цt
	õ
	no
	s a
•	ğ
•	LISI
	ä
	rac
	ಹ

Study and country	Mean protein intake	Method	Population	и	Outcome	Coefficient ²	Ρ
Chiu et al, 1997	$1.09 \mathrm{~g\cdot kg^{-1}\cdot d^{-1}}$	DPA (BMD)	Older post F	258	LS BMD	0.107	0.09
(23) Taiwan					FN BMD	0.085	0.18
Cooper et al, 1996	72 g/d	DPA/SPA (BMD)	Pre $(n = 72)$ and	290	LS BMD (pre F)	0.20	NS
(24) USA			post $(n = 218)$ F		Troch BMD (pre F)	0.36	< 0.01
			1		FN BMD (pre F)	0.26	< 0.05
					DR BMD (pre F)	0.35	< 0.01
					MR BMD (pre F)	0.27	< 0.05
					FS BMD (pre F)	0.22	NS
					LS BMD (post F)	0.13	NS
					Troch BMD (post F)	0.20	< 0.01
					FN BMD (post F)	0.25	< 0.001
					DR BMD (post F)	0.19	< 0.01
					MR BMD (post F)	0.21	< 0.01
					FS BMD (post F)	0.24	< 0.001
Devine et al, 2005	$1.2 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA, QUS	Elderly F, mean age	1077	Hip BMD	0.138	
(25) Australia			75 ± 3 y, white		BUA calc	0.136	
Freudenheim et al,	$1.02 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	SPA	Pre and post F,	99 (17 pre F,	R BMC (post F)	0.087	0.484
1986 (26) USA,			35–65 y, white	67 post F)	R BMC (pre F)	0.08	0.76
cross-sectional data					R BMD (post F)	-0.017	0.889
					R BMD (pre F)	0.384	0.128
					U BMC (post F)	-0.041	0.743
					U BMC (pre F)	0.063	0.81
					U BMD (post F)	0.044	0.725
					U BMD (pre F)	0.282	0.272
Gregg et al. 1999	$0.9 \ \mathrm{g} \cdot \mathrm{kg}^{-1} \cdot \mathrm{d}^{-1}$	OUS	Middle-aged F.	393	BUA calc	3.15 (univ assoc)	0.0008
(27) USA	p p		mean age 45.5 v	2	SOS calc	0.96 (univ assoc)	0.02
					LS BMD	0.015 (univ assoc)	0.02
					FN BMD	0.010 (univ assoc)	0.09
Henderson et al.	$1 \text{ g} \cdot \mathrm{kg}^{-1} \cdot \mathrm{d}^{-1}$	DXA	Pre F. mean age 18 v	115	EN BMD	0.22	< 0.05
1995 (28) Australia	0		0		Intertroch BMD	0.19	< 0.05
×.					Troch BMD	0.27	< 0.005
					DTB BMD	0.05	>0.05
					TF BMD	0.21	< 0.05
					FS BMD	0.09	>0.05
					LS BMD	0.05	>0.05
Hirota et al, 1992 (29) Japan	$1.13 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	SPA (BMD)	Young pre F, 19–25 y	161	FB MD	0.2307	0.002
Ho et al, 2003 (30) China,	$1.01 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA	<12 y post F,	454 (269 <4 y post	Spine BMD (<4 y meno)	$r^2 = 0.1 \; (-)$	0.705
soy protein			48–62 y, Asian	F, 185 >4 y post F)	FN BMD (<4 y meno)	$r^2 = 0.03 \ (+)$	0.764
					Troch BMD (<4 y meno)	$r^2 = 0.002 (+)$	0.945
					Intertroch BMD	$r^2 = 0.1 \; (-)$	0.616
					TH BMD (<4 y meno)	$r^2 = 0.0002 (-)$	0.981
					TB BMD (<4 y meno)	$r^2 = 0.7 \; (-)$	0.160
					TB BMC (<4 y meno)	$r^2 = 0.4 \; (-)$	0.304
)	Continued)

1678

DARLING ET AL

ical Nutrition	
ı Journal of Clin	
The American	
X	>

 TABLE 1 (Continued)

Study and country	Mean protein intake		Method	Population	u	Outcome	Coefficient ²	Ρ
						Spine BMD (>4 y meno)	$r^2 = 1.0 \; (+)$	0.172
						FN BMD (>4 y meno)	$r^2 = 1.3 \; (+)$	0.123
						Troch BMD (>4 y meno)	$r^2 = 2.7$ (+)	0.025
						Intertroch BMD (>4 y meno)	$r^2 = 3.4 (+)$	0.012
						TH BMD (>4 y meno)	$r^2 = 3.3$ (+)	0.013
						TB BMD (>4 y meno)	$r^2 = 2.0$ (+)	0.058
						TB BMC (>4 v meno)	$r^2 = 2.8$ (+)	0.024
Horiuchi et al,	TP, 62.5 g/d;	DXA		Post F, 52–83 y	85	LS BMD (soy)	0.251	0.05
2000 (31) Japan	SP. 12.6 g/d			•		Osteocalcin (sov)	-0.097	NS
)					ALP (soy)	-0.017	NS
						Pyridinoline (soy)	-0.132	NS
						Deoxypyd (soy)	-0.229	< 0.05
						Total protein (soy)		
						LS BMD (soy)	0.223	< 0.05
						Pyridinoline	-0.229	<0.05
						Deoxypyd (soy)	-0.218	NS
						Osteocalcin (sov)	-0.131	NS
						ALP (sov)	-0.09	SZ
llich et al.	$1.04 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA		Older F. >5	136	TB BMD	$r^2 = 51.8 (+)$	
2003 (32) USA	о О			post, white, mean		TB BMC	$r^2 = 73.4$ (+)	
				300 687 + 71 v		W RMD	$r^2 - 470(+)$	
				ago 00.1 - 1.1 y			$u^2 - 516(\pm)$	
-							$(\pm) 0.16 = 7$	0
Jaime et al,	1.2 g · kg ' · d '	DXA		Men >50 y	711	FN BMD (black)	965.0	0.040
2006 (33) Brazil						FN BMD (white)	0.055	0.505
Kyriazopoulos	$0.35 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	SPA		Men 18–30 y	300	DR BMC	0.025	0.835
et al, 2006							(correlation with	
(34) Greece							number of protein	
							meals in childhood)	
						DR BMD	0.065	0.583
							(correlation with	
							number of protein	
							meals in childhood)	
Lacey et al.	$1.35 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	SPA		Asian pre F, 35–40 y;	178 (89 pre F.	MR BMC (pre F)	0.22	0.08
1991 (35) Japan)			post F. 55–60 v	89 post F)	MR BMC (post F)	0.21	0.07
Lau et al, 1998 (36) China	$0.65 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA		Pre and post F, 70–89 y	76	LS BMD	0.09	
)					FN BMD	0.13	
						Intertroch BMD	0.084	I
						W BMD	0.042	
Metz et al,	$1.24 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	SPA		Pre F white, 24–28 y	38	DR BMC	$r^2 = 0.123 \; (-)$	0.019
1993 (37) USA						DR BMD	$r^2 = 0.114 (-)$	0.032
						MR BMC	$r^2 = 0.153 (-)$	0.009
						MR BMD	$r^2 = 0.038$ (-)	0.248
))	(bautinued)
								Ontinuea

DIETARY PROTEIN AND BONE HEALTH

1679

ie American Journal of Clinical Nutrition
The .

 TABLE 1 (Continued)

Study and country	Mean protein intake	Method	Population	и	Outcome	Coefficient ²	Ρ
Michaelsson et al,	59 g/d	DXA (dietary records data	F, 28–74 y, white	175	TB BMD	0.189	0.018
1995 (38) Sweden		used, not FFQ)			LS BMD	0.058	0.474
					FN BMD	0.117	0.151
					Osteocalcin	-0.036	0.669
Nakamura et al,	$1.29 \mathrm{~g\cdot kg^{-1}\cdot d^{-1}}$	Bone markers	Elderly post F,	43	Osteocalcin	-0.197	>0.05
2004 (39) Japan			mean age 68.3 y		Bone ALP	-0.039	>0.05
					Deoxypyd	-0.241	>0.05
					N-telopeptide	-0.205	>0.05
Orwoll et al,	I	CT (vertebrae),	Study 1: M	62	PR BMC (study 1)	0.2	NS
1987 (40) USA		SPA (radius)			DR BMC (study 1)	0.03	NS
			Study 2: M 30–90 y	92	Vertebral BMC (study 1)	0.27	< 0.05
					DR BMC (study 2)	0.22	NS
					PR BMC (study 2)	0.15	NS
					Vertebral BMC (study 2)	0.30	< 0.01
Pedrera et al,	$1.4-1.5 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	Phalangeal	228 pre, peri, and post	228	Phalangeal Ad-SOS	I	NS
2001 (41) Spain		SOS-PA	F (mean age 48.9 y)				
Promislow et al,	72.5 g/d	DXA	M/F 55–92 y; 572	960	TH BMD (F)	$\beta = 0.0143$	0.02
2002 (42) USA			F 388 M		FN BMD (F)	$\beta = 0.0092$	0.07
					TS BMD (F)	$\beta = 0.0150$	0.08
					TB BMD (F)	$\beta = 0.0158$	0.002
					TH BMD (M)	$\beta = 0.0057$	0.48
					FN BMD (M)	$\beta = 0.0032$	0.66
					TS BMD (M)	B = 0.0057	0.62
					TB BMD (M)	$\beta = -0.0005$	0.94
Ouintas et al.	1.4–1.7 g	DPA	Pre F	74	F BMC	0.236	<0.05
2003 (43) Spain)				F BMD	0.06968	>0.05
•					LS BMC	0.434	<0.05
					Hip BMC	0.411	< 0.05
					LS BMD	0.317	< 0.05
					Hip BMD	0.301	< 0.05
Rapuri et al,	$53.7-71.2 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA	Post F, 65–77 y	489	MR BMD	0.097	0.036
2003 (44) USA					FN BMD	0.092	0.047
					Troch BMD	0.155	0.001
					TF BMD	0.136	0.003
					LS BMD	0.065	0.163
					TB BMD	0.129	0.005
					<i>N</i> -telopeptide	-0.022	0.641
					Osteocalcin	0.01	0.832
Tanaka et al,	$1.3 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	Ultrasonic bone	Pre F 18–22 y	965	OSI calcaneus	0.234	0.009
2001 (45) Japan)	absorptiometry				(regression	
						coefficient)	
							(Continued)

1680

DARLING ET AL

TABLE 1 (Continued)

Study and country	Mean protein intake	Method	Population	и	Outcome	Coefficient	Ρ
Teegarden et al,	$1.21 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA	Young pre F	215	TB BMD	0.11	NS
1998 (46) USA					R BMD	0.16	<0.05
					LS BMD	0.19	<0.05
					FN BMD	0.08	NS
					Troch BMD	0.10	NS
					W BMD	0.08	NS
					TB BMC	0.12	NS
					R BMC	0.08	NS
					Spine BMC	0.23	<0.05
Tylavsky and	$1.01 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	SPA	Elderly F, 60–98 y	375	DR BMC	$\beta = 2.72$	0.03
Anderson, 1988					DR BMD	$\beta = 0.63$	0.25
(47) USA					MR BMC	$\beta = 2.96$	0.003
					MR BMD	$\beta = 1.36$	0.06
Wang et al, 1997	$0.97~{ m g\cdot kg^{-1}\cdot d^{-1}}$	DXA	Older post F	125	LS BMD	0.04	NS
(48) USA			ſ		FN BMD	-0.01	NS
Weikert et al,	67.9 g/d	QUS/BUA	F, 35–67 y	8178	TP (os calcis)	$\beta = -0.03$	0.017
2005 (49) Germany					AP (os calcis)	$\beta = -0.03$	0.010
					VP (os calcis)	$\beta = 0.11$	0.007
Whiting et al, 2002	$1.15 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	DXA (BMD)	M, 39–42 y	57	TB BMD	0.383	< 0.01
(50) Canada					LS BMD	0.419	<0.01
					TH BMD	0.322	< 0.05

hand; pre F, premenopausal women; post F, postmenopausal women; TS, total spine; PR, proximal radius; AP, animal protein; DXA, dual-energy X-ray absorptiometry; BMD, bone mineral density; BMC, bone mineral content; CT, computed tomography; meno, menopausal; SPA, single-photon absorptiometry; DPA, dual-photon absorptiometry; QUS, qualitative ultrasound; BUA, broadband ultrasound attenuation; protein: DTB, distal tibia/fibular; TF, total femur; F, forearm spine; TH, total hip; TB, total-body; ALP, alkaline phosphatase; deoxypyridinoline; W, Wards area; peri F, perimenopausal women; H, Ad-SOS, amplitude-dependent speed of sound; OSI, Osteo-Sono Assessment Index; univ assoc, univariate association; FFQ, food-frequency questionnaire.

² Simple r coefficients unless otherwise stated; for r^2 , the + or - in parentheses indicates whether the corresponding regression coefficient is positive or negative.

TABLE 2

Studies that provide r values or percentages of bone loss¹

Study and country	Mean protein intake	Population	Duration	Total <i>n</i>	Fracture/BMD site	Protein type	Percentage change, r, and/or P
Lukert et al, 1987 (51) USA, 4-5-y cohort study	29–158 g/d	Peri F, elderly M and F	4–5y	114	Bone density		_
Hannan et al.	$1 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	Elderly M and E.	4 v	615	LS BMD	TP	3.72% (01)
2000 (52) USA	1 8 118 u	68–91 v	. ,	010	LS BMD	AP	-3.79% (Q1)
		~~ / - ,			FN BMD	TP	-4.61% (01)
					FN BMD	AP	-3.95% (01
					Troch BM	TP	-8% (01)
					Troch BM	AP	-2.57% (01)
					W BMD	ТР	-7.05% (01
					W BMD	AP	-4.02% (01)
					R BMD	TP	-4.21% (01)
					R BMD	AP	-4.6% (O1)
Rapuri et al	53 7-71 2 g/d	Elderly women	3 v	489	ALP	Total	-5.04% (01
2003 (44) USA	0017 7112 g/d	Elderly women	5 9	.05	<i>N</i> -telopeptide	Total	10.4% (Q1
longitudinal data					Osteocalcin	Total	-5.76% (Q1
iongitudinar data					Spine BMD	Total	-1.95% (Q1)
					TB BMD	Total	-2.63% (Q1)
					TE BMD	Total	-1.25% (Q1)
					Troch BM	Total	-1.92% (Q1)
					FN BMD	Total	0.32% (Q1)
					MR BMD	Total	-3.32% (Q1)
Freudenheim et al	$1.02 \text{ g} \cdot kg^{-1} \cdot d^{-1}$	Pre and post F	4 v	99	\mathbf{R} BMD (pre E)	TP	r = 0.384
1986 (26) USA	1.02 g kg u	35_{65} v white	+ y	,,,	R BRID (pre 1)	11	(P > 0.05)
longitudinal data		55 65 y, white			Hu BMD (pre F)	ТР	r = 0.157
iongituumai uuta					fit birb (pre 1)	11	(P > 0.05)
					Ulna (pre F)	ТР	r = 0.282
					Olia (pie 1)	11	(P > 0.05)
					R BMD (post F)	ТР	r = -0.017
					R BRE (post I)		(P > 0.01)
					Hu BMD (post F)	ТР	r = 0.138
					in bilb (post I)		(P > 0.05)
					Ulna (post F)	TP	r = 0.044
					eniu (post 1)		$(P \ge 0.05)$
Geinoz et al	37 8_59 4 g/d	DXA	Fiderly M and F	74	F. FN BMD	0.679 ± 0.09^2	(I > 0.03) NS
1003 (53)	57.6-59.4 g/u	DAA	mean age 82 v (E)	/4	$(>1 \text{ a protein } kg^{-1} \cdot d^{-1})$	0.079 ± 0.09	145
Switzerland			and 80 v (M)		F FS BMD	1.288 ± 0.35	NS
Switzerland			and oo y (w)		$(>1 \text{ g protein }, \text{kg}^{-1}, \text{d}^{-1})$	1.200 = 0.55	110
					F: Spine BMD	0.935 ± 0.24	NS
					$(>1 \text{ g protein} \cdot kg^{-1} \cdot d^{-1})$	0.955 = 0.24	110
					(>1 g protein · kg · u)	0.574 ± 0.13	P < 0.05
					$(\leq 1 \text{ g protein }, \text{kg}^{-1}, \text{d}^{-1})$	0.574 = 0.15	1 < 0.05
					E FS BMD	1120 ± 0.33	NS
					$(\leq 1 \text{ g protein} \cdot \text{kg}^{-1} \cdot \text{d}^{-1})$	1.120 = 0.55	110
					E Spine BMD	0.877 ± 0.36	NS
					$(\leq 1 \text{ g protein }, kg^{-1}, d^{-1})$	0.877 ± 0.50	145
					(Sigprotein kg · u) M· EN BMD	0.761 ± 0.12	NS
					$(>1 a \text{ protoin } \log^{-1} d^{-1})$	0.701 ± 0.12	143
					(>1 g protein · kg · u)	1516 ± 0.10	NC
					$(>1 \text{ g protein } kg^{-1} \text{ d}^{-1})$	1.510 ± 0.19	183
					(>1 g plotelli · kg · u)	1.004 ± 0.26	NC
					(>1 g protein $\log^{-1} d^{-1}$)	1.094 ± 0.20	183
					(>1 g protein · kg · d)	0.642 ± 0.14	D < 0.05
					IVI: FIN BIVID (< 1 a protein $4 - 1$ 4^{-1})	0.043 ± 0.14	r' < 0.05
					$(\geq 1 \text{ g protein} \cdot \text{kg} \cdot \text{d}^{-1})$	1.210 ± 0.24	NC
						1.318 ± 0.34	1N2
					$(\geq 1 \text{ g protein} \cdot \text{kg}^{-1} \cdot \text{d}^{-1})$	0.947 ± 0.10	D < 0.05
					M: Spine BMD $(<1 - 2)$	0.847 ± 0.18	P < 0.05
					$(\geq 1 \text{ g protein} \cdot \text{kg}^{-1} \cdot \text{d}^{-1})$		

¹ LS, lumbar spine; FN, femoral neck; Troch, trochanter; MR, midradius; R, radius; TP, total protein; TF, total femur; TB, total-body; peri F, perimenopausal women; post F, postmenopausal women; pre F, premenopausal women; AP, animal protein; Hu, humerus; DXA, dual-energy X-ray absorptiometry; ALP, alkaline phosphatase; BMD, bone mineral density; Q, quartile; W, Wards area. ² Mean \pm SD (all such values).

Pooled r values for protein intake and bone health by sex and age subgroup^I

					Heterogeneit	y test	
Sub group	Total n	Pooled r value ($\pm 95\%$ CI)	r^2	Percentage	χ^2	Р	Studies
Men, BMD	448	0.2 (0.11, 0.29)	0.04	4	12.45, df = 4	0.0143	Jaime (33), Whiting (50)
Men, BMC	462	0.212 (0.122, 0.302)	0.04	4	3.07, df = 5	0.6892	Orwoll (40)
Post F, BMD	6494	0.09 (0.07, 0.11)	0.008	0.8	29.51, df = 23	0.1640	Rapuri (44), Freudenheim (26), Cooper (24), Chiu (23), Lau (36), Wang (48), Devine (25), Horiuchi (31)
Post F, BMC	357	0.11 (0.00, 0.22)	0.01	1	2.72, $df = 4$	0.6057	Freudenheim (26), Lacey (35)
Pre F, BMD	3015	0.249 (0.209, 0.289)	0.06	6	55.38, df = 26	0.0007	Freudenheim (26), Cooper (24), Chiu (23), Lau (36), Wang (48), Devine (25), Horiuchi (31)
Pre F, BMC	933	0.14 (0.11, 0.17)	0.02	2	4.10, df = 8	0.8480	Freudenheim (26), Teegarden (46), Cooper (24), Hirota (29), Quintas (43), Henderson (28)

¹ Pre F, premenopausal women; post F, postmenopausal women; BMC, bone mineral content; BMD, bone mineral density.

They were also all significant, except for BMC and BMD at the ulna and humerus and for osteocalcin and hydroxyproline. Overall, heterogeneity was low, with only 3 of 20 pooled estimates showing significant heterogeneity, which were the men (BMD), premenopausal women (BMD), and radius (BMD) estimates.

Fracture risk

As can be seen in **Tables 5**, **6**, and **7**, the 11 studies examining fracture risk were all conducted in the United States, China, or Europe. All studies assessed hip fractures, except for one that also assessed forearm fractures (54) and one that examined all fractures (60). Seven were cohort studies (54–60) 2 were case-control (63, 64) studies, and 2 were ecologic studies (61, 62). The studies were mainly of women (5 postmenopausal and 3 pre- and postmenopausal); 4 studies were conducted in both men and women and 1 was in men alone. The 2 ecologic studies reported the relation between protein intake and fracture risk in 16 of 33 countries worldwide. Overall, these fracture studies examined total protein in 6 studies (54, 56, 57, 62–64), animal protein in 8 studies (54–56, 58, 59, 61, 62, 64), vegetable protein in 6 studies (54, 56, 58, 59, 62, 64), and soy protein in 1 study (60).

Study quality

Nearly all studies clearly stated that they had adjusted for relevant confounders such as age, sex, weight, BMI, physical activity, menopausal status, smoking, use of hormones or medications, alcohol, and calcium intake. One of the ecologic studies reported adjustment for age (61). For 2 studies it was not clear whether adjustments had been made (51, 62). Overall, the cohort studies may have been less affected by confounders than the studies looking at BMD, BMC, and bone markers.

In 3 studies, fracture incidence was examined by self report from the participants followed up by confirmation from medical records or medical practitioner (55, 56, 59). Three studies relied on self report alone (54, 60, 64), and one study looked at medical records alone (57). The 2 case-control studies (63, 64), as would be expected, chose cases from medical records and lists of hospital patients who had had a confirmed fracture. The 2 ecologic studies (61, 62) used published survey data of reported incident fractures.

In terms of dropout rates, this was not clear for 4 studies, but was reported in 5 studies and varied from 1.3% to 28%. The final 2 studies were of case-control design, so this was less applicable. In terms of dietary-assessment methods, 8 studies (54–56, 58–60, 63, 64) used FFQ and 3 studies used national survey data (57, 61, 62).

Hip fracture

Overall, the cohort studies indicated either a benefit or no effect of protein intake on hip fracture relative risk, with only one study reporting a significant increase in risk with increasing animal protein intake and increasing animal to vegetable protein ratio (59). Three studies found a decreased relative risk of hip fracture with increasing animal (56), total (56), and vegetable (59) protein intakes. Two studies found no significant association of animal protein with fracture risk (54, 55), whereas 2 studies found no association of total protein with fracture risk (54, 57). Last, 2 studies found no relation between fracture risk and vegetable protein (54, 56).

In contrast, the 2 ecologic studies (61, 62) found a positive correlation between animal protein intake and hip fracture risk and a negative association of increasing vegetable protein (62). Of the 2 case control studies, 1 reported no significant relation between protein intake and risk of hip fracture (63), but the other reported a beneficial association with a significant substantial reduction in hip fracture in 50–69-y-olds (OR = 0.35, highest compared with lowest quartile of total protein intake; 64). However, in this study, the beneficial influence of animal or vegetable protein alone (OR = 0.43 and 0.52) did not achieve significance for 50–69-y-olds, and there was no identifiable influence of any type of protein in the older 70–89-y-old groups (64).

Forearm fracture

The more limited literature on forearm fracture indicates mixed results, with one study indicating a significant increase in

TABLE 4

Pooled r values for protein intake and bone health by outcome¹

					Heterogene	eity	
Bone site	Total n	Pooled r value ($\pm 95\%$ Cl)	r^2	Percentage	χ^2	Р	Studies
Radius BMC (all areas)	859	0.150 (0.08, 0.22)	0.02	2	4.24, df = 9	0.8949	Freudenheim (26), Orwoll (40), Lacey (35), Quintas (43)
Radius BMD (all areas)	1584	0.124 (0.07, 0.17)	0.02	2	19.29, df = 9	0.0228	Rapuri (44), Freudenheim (26), Teegarden (46), Cooper (24), Hirota (29), Quintas (43), Cooper (24)
Ulna BMC	84	-0.022 (-0.24 , 0.20)	-0.0005	< 0.05	0.12, df = 1	0.7290	Freudenheim (26)
Ulna BMD	84	0.088(-0.13, 0.31)	0.007	0.7	0.69. df = 1	0.4062	Freudenheim (26)
Hip BMD	4771	0.117 (0.09, 0.15)	0.01	1	32.41, df = 22	0.0707	Rapuri (44), Jaime (33), Chiu (23), Cooper (24), Lau (36), Wang (48),
							Henderson (28), Teegarden (46), Michaelsson (38), Whiting (50),
Femur, tibia, and fibula BMD	1085	0.108 (0.05, 0.17)	0.01	1	4.23, df = 5	0.5168	Devine (25), Quintas (43) Rapuri (44), Henderson (28), Cooper (24)
Humerus BMC	84	0.159(-0.1, 0.38)	0.03	3	0.24. df = 1	0.6242	Freudenheim (26)
Humerus BMD	84	0.141 (-0.08, 0.36)	0.02	2	$0.004. \mathrm{df} = 1$	0.9496	Freudenheim (26)
Lumbar spine BMD	1933	0.143 (0.10, 0.20)	0.02	2	17.73, $df = 11$	0.0597	Rapuri (44), Horiuchi (31), Henderson (28),
							Quintas (43), Michaelsson (38) Whiting (50), Chiu (23), Cooper (24), Lau (36), Wang (48), Teegarden (46)
Lumbar spine BMC	443	0.285 (0.20, 0.38)	0.08	8	2.868, df = 3	0.4124	Quintas (43), Teegarden (46), Orwoll (40)
Total-body BMD	911	0.152 (0.08, 0.22)	0.02	2	4.271, df = 3	0.2336	Rapuri (44), Whiting (50), Teegarden (46), Michaelsson (38)
Osteocalcin	1043	0.005 (-0.06, 0.07)	0.00003	<0.003	6.61, df = 5	0.2513	Rapuri (44), Nakamura (39), Michaelsson (38), Cooper (24), Horiuchi (31)
Deoxypyridinoline	128	-0.226(-0.41, -0.05)	0.05	5	0.02. df = 1	0.8875	Nakamura (39), Horiuchi (31)
Hydroxyproline	290	-0.07 (-0.19, 0.05)	0.005	0.5	3.12, df = 1	0.0773	Cooper (24)

¹ BMC, bone mineral content; BMD, bone mineral density.

risk with increasing total and animal protein intakes, but no effect of vegetable protein (54) and one study (58) indicated a reduced risk of wrist fracture with increasing consumption of meat products. Finally for all fractures, one study (60) reported a significant reduction in risk with increased soy protein intake.

As shown in **Figure 2**, no significant effect was found for all protein on the RR of fractures in the highest compared with the lowest quintile/quartile of protein intake for total protein, $RR_{(random)} = 0.75 (0.47-1.21, P = 0.24)$ animal protein, $RR_{(random)} = 0.83 (0.54-1.30, P = 0.42)$ or vegetable protein: $RR_{(random)} = 1.21 (0.82-1.79, P = 0.34)$.

Fracture risk meta-analysis

Studies excluded from the quantitative meta-analysis of fracture risk (n = 6) included the ecologic studies (results in the wrong format), 2 case control studies (ORs not relative risks), 1 study with missing data, 1 study based on food-frequency measurements, and 1 study in which risk estimates were for combined fractures. This left 4 suitable studies (54–57) which were pooled in a meta-analysis. Heterogeneity was moderate to low for total ($I^2 = 22.0\%$) animal ($I^2 = 48.3\%$), and vegetable ($I^2 = 2.0\%$) proteins, respectively. Therefore, all relative risk (RR) estimates were pooled by using random-effects models and are denoted by the notation as RR_(random).

Supplementation trials

Study characteristics

The 19 supplementation trials (**Table 8**) were randomized controlled trials or nonrandomized comparative trials. They included 2 studies of perimenopausal women, 5 studies of premenopausal women, and 6 of postmenopausal women. Four studies examined men and women, and 2 examined men alone. Fourteen studies were from Western countries, (United States, the Netherlands, and Switzerland), and 5 studies were from Japan. Seven studies used soy protein for the intervention, 5 used MBP (all Japanese studies), 1 study compared high- with

Characteristics of the cohort studies that assessed fracture risk¹

		Population			Fracture/BMD	Protein			
Study and country	Mean protein intake	and age	Length	Total n	site	type	RR^2	95% Cl	Р
Feskanich et al,	79.6 g/d (median)	White F, 35–59 y	12 y	85,900	FF	AP	1.25	1.07, 1.46	0.004
1996 (54) USA						TP	1.22	1.04, 1.43	0.01
						VP	0.9	0.77, 1.06	0.17
					HF	AP	0.98	0.65, 1.47	0.7
						TP	0.96	0.64, 1.45	0.7
						VP	1.11	0.75, 1.66	0.58
Meyer et al, 1997	0.8 g/d	M and F, mean	11.4 y	19,752 F	HF (F)	AP	0.96	0.62, 1.49	0.37
(55) Norway		age 47.1 y			HF (M)	AP	1.3	0.63, 2.68	0.48
				20,035 M					
Munger et al, 1999	1.2 g/d	Post F, 55–69 y	1–3 y	32,050	HF	AP	0.31	0.10, 0.93	0.037
(56) USA						TP	0.44	0.16, 1.22	0.049
						VP	1.92	0.72, 5.11	0.11
Mussolino et al, 1998 (57) USA	<56 to >98 g/d	White M, 45–74 y	22 y	2879	HF	TP	0.55	0.20, 1.55	—
Thorpe et al, 2007	_	Peri and post F	25 y	1865	Hazard ratio wrist	Meat >4	0.44	0.23, 0.84	0.02
(58) USA					fracture	times/wk			
			_			VP > 1/d	0.79	0.43, 1.46	0.31
Sellmeyer et al, 2001	49.8 g/d	White F, >65 y	7 y	1035	Hip fracture	VP	0.3	_	0.03
(59) USA						Ratio	3.7		0.04
						AP:VP			
						AP	2.7		0.04
Zhang et al, 2005 (60)	3.3–18.5 g/d	Post F, 40–70 y	_	24,403	All fractures	SP	0.63	0.53, 0.76	< 0.001

¹ RR, relative risk; TP, total protein; AP, animal protein; VP, vegetable protein; SP, soy protein; BMD, bone mineral density; FF, forearm fracture; HF, hip fracture; peri F, perimenopausal women; post F, postmenopausal women.

² Highest quartile/quintile of intake; lowest quartile = 1.

low-vegetable protein, and 1 compared high- with low-animal (meat) protein. The other 5 studies examined total protein (3 compared high- with low-protein diets, and 2 compared supplement with placebo). Outcome indicators were either bone turnover markers or BMD and BMC.

Study quality

There were 12 randomized placebo-controlled trials (15, 65–68, 70, 75, 76, 78, 80–82). The quality of these trials was assessed by using CONSORT. All of these studies, except 3 (67, 70, 78), were clearly stated as double blinded. In only 5 studies (67, 68, 70, 76, 82) were the background protein intakes clearly stated, and these varied from an average of 45 to 112 g/d. Only 4 of the 12 studies (67, 76, 80, 82) stated they had used a random number generation

method, with only 1 giving details of stratification of subjects during this process (80). Only one study assessed participants' beliefs about their allocation (65), but most did attempt to mask the flavor of the supplements or attempted to ensure that they were as identical as possible. However, it was unclear in many studies how successful this masking was. Only one study (76) stated that the allocation to treatment was undertaken by persons not involved in the investigation.

Trials of other design were quality assessed separately. Two trials were crossovers (73, 77), whereas one study switched all participants from higher to lower intakes (72), and one was a before and after supplementation comparison in the same participants (79). Last, in 3 studies, participants were allocated to high-, medium-, or low-protein diets (74); to high- or low-protein diets (71); or to soyfoods or control foods (69). Only

TABLE 6				
Characteristics of	the ecologic	studies th	hat assessed	fracture risk

Study and country	Mean protein intake	Method	Population and age	n	Outcome	Coefficient ²	Р
Abelow et al, 1992 (61) USA	10.4–77.8 g/d (AP)	Fracture	F, >50 y	34 studies, 16 countries	Hip fracture and AP	$r^2 = 0.66 (+),$ by study	< 0.00
						$r^2 = 0.67 (+),$ by country	< 0.00
Frassetto et al, 2000	48–110.9 g/d	Fracture	F, >50 y	33 countries	TP	r = 0.67	< 0.00
(62) USA, cross-cultural					AP	r = 0.82	< 0.00
					VP	r = -0.370	< 0.04

¹ TP, total protein; AP, animal protein; VP, vegetable protein.

² For r^2 , the + or - in parentheses indicates whether the corresponding regression coefficient is positive or negative.

TABLE 7

Characteristics of the case-control studies that assessed fracture risk¹

		Population					
Study and country	Protein intake	and age	n		Group/outcome	OR^2	Р
Nieves et al, 1992 (63) USA	<24 to >55 g/d	F, 50–103 y	329 (161 cases, 168 controls)	Hip (OR)	Hip fracture	1.04	_
Wengreen et al, 2004	$1.2 \text{ g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$	M and F,	2501	Hip (OR)	50-69 y (TP)	0.35	< 0.001
(64) USA		50–89 y	(1157 cases, 1334 controls)		70–89 y (TP)	1.28	0.06
					50-69 y (AP)	0.43	0.21
					70–89 y (AP)	1.54	0.95
					50-69 y (VP)	0.52	0.19
					70–89 y (VP)	0.79	0.46

¹ TP, total protein; AP, animal protein; VP, vegetable protein; OR, odds ratio.

² Highest quartile/quintile of intake; lowest quartile = 1.

one study (69) stated that allocation to treatment was undertaken by persons not involved in the investigation. this bone marker with increased vegetable protein (73) or soy protein (75) in other studies.

Bone markers

Review:

Overall, the bone-markers intervention studies indicated mixed results. Of the bone-resorption markers, hydroxyproline excretion was significantly reduced with a low-meat diet in one study (77), but *N*-telopeptide excretion was significantly increased (with increased vegetable protein intake) in another study (73), and there was no significant effect of protein supplementation for at least one marker in 2 studies: *N*-telopeptide (77) and deoxypyridinoline (75).

For the markers of bone formation, there was no effect of increased animal protein intake (77) or increased total protein intake (74) on osteocalcin. Also, for bone alkaline phosphatase there was no significant reduction when overall protein intake was increased (74), although no significant effect was found on

Protein and Bone Health

BMD and BMC
In terms of BMD, protein supplementation reduced bone loss
in 2 studies of older people (78, 82). However, there was no

in 2 studies of older people (78, 82). However, there was no effect of soy on BMD in 3 studies (15, 69, 76), although soy reduced BMD loss in one study compared with control (65). A benefit of MBP on BMD was found in 4 studies (66, 67, 80, 81). Three of the soy protein supplementation studies also measured BMC, and no effect was found (15, 65, 69).

Meta-analysis of supplementation trials

Thirteen of the intervention trials (66, 68–75, 77, 79, 81, 82) were not suitable for meta-analysis because of incomplete data, the data were in the wrong format, the study was not randomized, the study was not placebo-controlled, or the study was not a dietary intervention or had MBP as a control. There

Study or sub-category	log[RR] (SE)	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
01 Total				
Feskanich 1996 (54)	-0.0480 (0.2100)		66.59	0.95 [0.63, 1.44]
Munger 1999 (56)	-0.8210 (0.5200) -		16.99	0.44 [0.16, 1.22]
Mussolino 1998 (57)	-0.5978 (0.5300)		16.42	0.55 [0.19, 1.55]
Subtotal (95% CI)			100.00	0.75 [0.47, 1.20]
Test for heterogeneity: Chi? :	= 2.51, df = 2 (P = 0.28), P = 20.4%			
Test for overall effect: Z = 1.	19 (P = 0.23)			
02 Animal				
Feskanich 1996 (54)	-0.0202 (0.2100)	-+-	46.07	0.98 [0.65, 1.48]
Meyer 1997 (55)	-0.0408 (0.2200)		43.64	0.96 [0.62, 1.48]
Munger 1999 (56)	-1.1702 (0.5600)		10.29	0.31 [0.10, 0.93]
Subtotal (95% CI)			100.00	0.83 [0.54, 1.30]
Test for heterogeneity: Chi ² :	= 3.87, df = 2 (P = 0.14), P = 48.3%			
Test for overall effect: Z = 0.	80 (P = 0.42)			
03 Vegetable				
Feskanich 1996 (54)	0.1044 (0.2100)		78.52	1.11 [0.74, 1.68]
Munger 1999 (56)	0.6523 (0.5000)	- -	21.48	1.92 [0.72, 5.12]
Subtotal (95% CI)			100.00	1.21 [0.82, 1.79]
Test for heterogeneity: Chi ² :	= 1.02, df = 1 (P = 0.31), F = 2.0%	-		
Test for overall effect: Z = 0.	.96 (P = 0.34)			

FIGURE 2. The effect of protein intake on hip fractures. Random-effects pooled relative risk (RR) analysis was used to compare highest with lowest quintile/quartile of protein intake.

Nutrition	
of Clinical	
Journal c	
American	
] The	
×	

 TABLE 8

 Characteristics of the supplementation trials¹

						Intervention		Placebo	
Study and country	Duration	Supplementation vs control	Total n and/or age	Outcomes measured	и	Mean ± SD	и	Mean ± SD	Ρ
Alekel et al,	24 wk	Soy (80.4 mg/d)	2002 Peri F	LS BMC	24	52.96 ± 8.72	21	56.57 ± 9.74	NS
2000 (65) USA		vs whey	F	LS BMD	24	0.933 ± 0.12	21	0.989 ± 0.132	NS
				BSAP	24	15.05 ± 5.11	21	12.51 ± 4.3	I
Aoe et al, 2001	6 mo	MBP (40 mg/d)	Pre F	% Change	17	3.42 ± 2.05	16	2.01 ± 1.75	0.04
(66) Japan		vs placebo		in calc BMD					
Aoe et al, 2005	6 mo	40 mg/d MBP vs	27 Peri F	N-telopeptide	14	47.3 ± 8.3	13	58.7 ± 8.3	NS
(67) Japan		inactive placebo		Osteoalcin	14	5.73 ± 0.59	13	5.82 ± 0.59	NS
				LS BMD	14	1.11 ± 0.03	13	1.09 ± 0.03	<0.05
Arjmandi et al,	3 mo	Soy protein (40 g/d)	42 Post F	BSAP	20	0.41 ± 0.14	22	0.35 ± 0.15	I
2003 (68) USA		vs MBP		Deoxypyd	20	7.19 ± 3.31	22	6.79 ± 3.24	
Arjmandi et al,	1 y	Soy protein (25 g/d) in	62 Post F,	Osteocalcin	35	18.1 ± 11.83	27	16.2 ± 11.43	0.365
2005 (69) USA		soyfoods vs nonsoyfoods	<60 y	BSAP	35	24.9 ± 6.51	27	25.3 ± 6.24	0.796
				Deoxypyd	35	5.1 ± 1.78	27	4.9 ± 2.08	0.888
				LS BMD	35	0.93 ± 0.13	27	0.93 ± 0.14	0.958
				W BMC	35	2003 ± 289.9	27	1994 ± 301.3	0.944
				TH BMD	35	0.852 ± 0.11	27	0.87 ± 7	0.512
				TH BMC	35	57.18 ± 10.31	27	57.14 ± 0.109	0.967
				LS BMC	35	54.15 ± 10.74	27	52.806 ± 10.7	0.662
				W BMD	35	1.036 ± 0.11	27	1.036 ± 11.1	0.986
Dalais et al,	3 mo	Soy protein (40 g/d) vs	106 Post F,	Pyridinoline	38	70 ± 24.97	40	72.72 ± 21.31	NS
2003 (70) Australia		casein placebo	50–75 y	Deoxypyd	38	14.48 ± 8.15	40	14.19 ± 6.58	NS
Dawson-Hughes	63 d	High (0.75 g \cdot kg ⁻¹ \cdot d ⁻¹) vs	32 Elderly					Low protein	
et al, 2004 (71) USA		low (0.04 g \cdot kg ⁻¹ \cdot d ⁻¹) protein	M and F	N-telopeptide	16	102.3 ± 34.5	16	170 ± 118.4	0.038
						(high protein)		(low protein)	
				Osteocalcin	16	3.4 ± 0.9	16	3.2 ± 1.5	0.795
						(high protein)		(low protein)	
Ince et al,	2wk	High (1.1 $g \cdot kg^{-1} \cdot d^{-1}$)	39 Pre F,	N-telopeptide	39	442 ± 124.9	39	360 ± 99.9	< 0.001
2004 (72) USA		vs low (0.8 g \cdot kg ⁻¹ \cdot d ⁻¹) protein	22–39 y			(high protein)		(low protein)	
				Osteocalcin	39	15.8 ± 8.74	39	13.4 ± 8.1	0.166
						(high protein)		(low protein)	
Jenkins et al,	2 mo	Vegetable (27% protein)	20 Middle-aged	N-telopeptide	20	584 ± 340	20	461 ± 259	I
2003 (73) USA		vs control (16% protein)	M and F	BSAP	20	20 ± 4.5	20	19 ± 4.5	I
Kerstetter et al,	4 d	High (2.1 $\text{g} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$)	16 Pre F,	Osteocalcin		5.7 ± 0.8^2		7.6 ± 1.4	NS
1999 (74) USA		vs low (0.7 g \cdot kg ⁻¹ \cdot d ⁻¹) protein	20-40 y	BSAP		57.2 ± 7.8^2		69.4 ± 8.8	NS
				N-telopeptide		48.2 ± 7.2^2		32.7 ± 5.3	<0.05
Khalil et al,	3 mo	Soy (40 g/d)	64 M,	BSAP	24	I	22		NS
2002 (75) USA		vs milk protein	59.2 ± 17.6 y	Deoxypyd	24	I	22	I	NS
								(C	mtinued)

DIETARY PROTEIN AND BONE HEALTH

1687

Nutrition
f Clinical
Journal o
American
The

TABLE 8 (Continued)

						Intervention		Placebo	
Study and country	Duration	Supplementation vs control	Total n and/or age	Outcomes measured	и	Mean ± SD	и	Mean \pm SD	Ρ
Kreijkamp-Kaspers et al,	1 y	Soy protein (25.6 g/d)	202 Elderly F,	FN BMD	88	0.718 ± 0.01	87	0.691 ± 0.108	0.89
2004 (76) Netherlands		vs total milk protein	60–75 y	Hip BMD	88	0.86 ± 0.11	87	0.83 ± 0.12	0.27
				Intertroch BMD	88	1.01 ± 0.14	87	0.969 ± 0.149	0.02
				Troch BMD	88	0.666 ± 0.10	87	0.638 ± 0.097	0.28
				W BMD	88	0.549 ± 0.13	87	0.527 ± 0.126	0.33
				LS BMD	88	0.92 ± 0.160	87	0.89 ± 0.17	0.79
				BSAP	88	12.1 ± 4.4	87	12.4 ± 3.7	0.55
Potter et al,	6 mo	Soy protein (40 g/d)	66 Post F	LS BMD	22	0.969 ± 0.143	22	0.934 ± 0.153	NS
1998 (15) USA		vs milk protein		LS BMC	22	55.1 ± 11.7	22	55.4 ± 10.3	NS
Roughead et al,	8 wk	High-meat	15 Post F	Hydroxy	15	71.5 (high meat)	15	64.5	0.001
2003 (77) USA		(20% of energy)						(low meat)	
		vs low-meat		Osteocalcin	15	4.01 (high meat)	15	3.94	NS
		(12% of energy) diet						(low meat)	
				N-telopeptide	15	3.79 (high meat)	15	3.83	NS
								(low meat)	
				BSAP	15	18.1 (high meat)	15	18.3	NS
								(low meat)	
Tkatch et al,	38 d	Protein (20.4 g/d) vs	62 Elderly	Change in FN	25	0.569 ± 0.105	23	0.579 ± 0.12	
1992 (10) JWILZEIIAIU		no protein supprentient	IM AILO F, ILICALI	DIVID					
			age 82 y	Change in FS BMD	24	0.24 ± 0.049	22	1.257 ± 0.3	
				Change in LS BMD	25	0.88 ± 0.18	23	0.81 ± 0.17	
				Change in osteocalcin	24	6.94 ± 2.45	18	4.96 ± 2.93	
Toba et al, 2001 (79) Japan	16 d	MBP (30 mg/d) vs inactive placebo	30 M, 36.2 ± 8.5 y	N-telopeptide	30	26.8 ± 9.6	30	31.5 ± 10.2	< 0.001
		4		Osteocalcin	30	5.4 ± 1.8	30	3.7 ± 1.8	< 0.001
Uenishi et al,	6 mo	MBP (40 mg/d)	35 Pre F	LS BMD	17	1.16 ± 0.14	18	1.13 ± 0.16	
2007 (80) Japan		vs inactive placebo							
Yamamura et al,		MBP (40 mg/d)	33 Pre F	R BMD	17	I	16		
2002 (81) Japan		vs inactive placebo							
								(C	ontinued)

1688

DARLING ET AL

Vutrition
\sim
Clinical
5
0
Journal
can
Ameri
The
10

TABLE 8 (Continued)

						Intervention		Placebo	
Study and country	Duration	Supplementation vs control	Total n and/or age	Outcomes measured	и	Mean ± SD	и	Mean ± SD	Ρ
Schurch et al,		Total protein (20 g/d) vs placebo	82 Elderly M and F,	% Change in deoxypyd		-9.2^{4}		1.4^{4}	>0.2
1998 (82) Switzerland,		4	$80.7 \pm 7.4 \text{ y}$	% Change in FS BMD		-1.61^{4}		-1.23^{4}	>0.2
6 mo				% Change in LS BMD		-3.05^{4}		-6.11^{4}	>0.2
				% Change in osteocalcin	I	7.9^{4}	I	6.9^{4}	>0.2
				% Change in PF BMD		-2.95^{4}		-3.37^{4}	>0.2
				% Change in pyridinoline		6.6^{4}	I	17^{4}	>0.2
				% Change in Troch BMD		-3.02^{4}		-3.65^{4}	>0.2
				% Change in W BMD	I	-3.77^{4}	I	-3.1^{4}	>0.2
				% Change in AntLS BM		-0.48^{4}		-0.82^{4}	>0.2

deoxypyd, deoxypyridinoline; peri F, perimenopausal women; pre F, premenopausal women; post F, postmenopausal women; R, radius; PF, proximal femur; BMD, bone mineral density, BMC, bone mineral content; MBP, milk basic protein; W, Wards area. Mean ± SEM.

= same supplement without protein ³ Experimental supplement = 20.4 g protein/d with calcium (0.525 g), 750 IU vitamin A, and 25 IU vitamin D3. Control ⁴ Values are means

were only enough studies for all protein types to pool lumbar spine BMD as an outcome; therefore, one study was excluded because it did not give lumbar spine as an outcome measure (70). The remaining 6 studies (15, 65, 67, 76, 78, 80) were pooled in the meta-analyses. Here, random- and fixed-effects models are denoted by the subscript (random) or (fixed) as appropriate.

For all protein (total protein and MBP), a statistically significant effect of protein supplementation on lumbar spine BMD was observed [weighted mean difference $(WMD)_{(fixed)} = 0.02;$ 95% CI: 0.00, 0.04; P = 0.04; Figure 3]. For soy protein studies (Figure 4), no statistically significant effect was found for lumbar spine BMD (WMD_(random) = 0.01 (95% CI: -0.05, 0.06; P = 0.85). For MBP studies alone (Figure 5), no statistically significant effect was found for all lumbar spine BMD $(WMD_{(fixed)} = 0.02; 95\% CI: 0.00, 0.04; P = 0.07).$ Overall heterogeneity was low for the influence of protein on BMD at $I^2 = 0\%$. The effects of soy protein and MBP were of high and low heterogeneity: $I^2 = 54.1\%$ and $I^2 = 0.0\%$, respectively.

DISCUSSION

The relation between dietary protein intakes and bone health has a contentious history, with much research examining a wide range of indirect and direct measures of bone health. Our analysis was limited to direct measures in terms of BMD and BMC and fracture rates as well as markers of bone turnover. This literature is restricted because it does not examine calcium metabolism. However, it shows that, in contrast with the adverse relation between protein intake and fracture risk shown between populations (in ecologic studies), there is little support for an apparently adverse relation within populations. Indeed, only a small minority of studies reviewed here reported an adverse influence of dietary protein. Also, no cross-sectional survey or cohort studies showed any adverse association of protein with BMD, and only one showed an adverse association with BMC. Several cross-sectional surveys and cohort studies indicated a beneficial association between protein intakes and BMD and BMC.

Indeed, there were positive pooled correlations for the relation between total protein intake and BMD and BMC for nearly all bone sites, and nearly all correlations were significant. This relation was consistent among all population subgroups studied. The proportion of BMD attributable to protein intake indicated in the cross-sectional surveys of this review was 1-2%. This shows a beneficial association of protein with bone health, albeit the effect size was very small. Most importantly, the small but significant positive effect of protein supplementation on lumbar spine BMD suggested by the meta-analysis results gives support to a causal beneficial influence of protein.

However, within the studies identified here, the translation of this potential benefit into a reduced risk of hip fractures in cohort studies in the meta-analysis was not found. This was the case even though multivariate-adjusted analyses were used, which minimized the likely influence of confounding. Thus, there was no clear relation between fracture risk and dietary protein in the qualitative review or in the meta-analysis. This included the analyses looking at vegetable or animal protein separately. Unfortunately there were no intervention studies available here with complete data to further investigate the effect of animal and vegetable protein supplementation on fracture risk or BMD.

dv.			Treatment		Control	WND (fived)	Weight	W/MD (freed)
sub-category		N	Mean (SD)	N	Mean (SD)	95% CI	%	95% CI
)1 Lumbar Spine	BMD							
Aoe 2005 (67)		14	1.11(0.03)	13	1.09(0.03)	-	90.57	0.02 [0.00, 0.04]
Tkatch 1992 (78	3)	25	0.88(0.18)	23	0.81(0.17)		4.74	0.07 [-0.03, 0.17]
Uenishi 2007 (8)	0)	17	1.16(0.14)	18	1.13(0.16)		4.70	0.03 [-0.07, 0.13]
Subtotal (95% CI)		56		54		•	100.00	0.02 [0.00, 0.04]
Test for heteroge	neity: Chi? = 0.95,	df = 2 (P	= 0.62), F = 0%					
Test for overall e	ffect: Z = 2.08 (P	= 0.04)						

FIGURE 3. The effect of protein supplementation on lumbar spine bone mineral density (BMD). WMD, weighted mean difference.

In the absence of long-term intervention studies, the issue of whether protein intake does influence fracture risk must remain an open question. Fracture risk is indeed the most important clinical outcome, and it is disappointing that a significant association of protein and fracture risk was not found here. Indeed, the lack of an association with fracture risk may weaken the theory that protein intake influences bone health.

Still, taken together, our analysis suggests that the strongly debated cross-cultural direct relation between animal protein intake and fracture risk is highly unlikely to represent a causal influence. Indeed, as pointed out many years ago (83), the relation is the same as the positive relation between cross-cultural intakes of calcium and fracture risk, which few would argue to be a causal influence. As others have remarked (9), there are many difficulties in interpreting cross-cultural comparisons of national dietary data with specific multifactorial outcomes, such as fracture risk.

In terms of soy protein, no evidence was found in this metaanalyses to support any significant effect compared with other protein on lumbar spine BMD. This could be due to no differential effect of soy protein compared with other protein types on bone. It could also be due to methodologic issues, including the very small number of studies available and the small numbers of participants.

MBP is a specific dietary protein source that appears to have an influence on bone and has been examined as one potential mediator of the beneficial influence of milk on bone health. However, in our analysis, no effect was found for MBP compared with inactive control on lumbar spine BMD. It must be noted that the overall literature is small and limited to studies conducted in Japanese populations. Clearly, further studies especially within the context of white populations and diets are required.

Limitations of this review

Protein and Bone Health

Review

The quality of the intervention studies was reasonable, but most studies showed omissions in the reporting of randomization and investigator blinding, although participant blinding was reported in nearly all studies. Therefore, risk of bias was moderate, but it may have affected the reliability of the meta-analysis.

Although publication bias was not specifically measured, it is reasonable to assume that it existed to a certain degree in our analysis and may have led to a larger selection of positive findings over no effect. Reference lists in articles were not searched, and this may be a limitation of this review. Also, some authors did not report findings that were not significant, and these could not always be obtained from authors, which again may exaggerate a positive effect.

The situation is also confused by the clear heterogeneity present in the pooled r values and the main meta-analyses. The studies had a wide variety of supplement types and dosages, durations, clinical outcomes, and designs. This made it very difficult to draw firm conclusions from the data about the existence of effects and their clinical importance. Study durations were often not long enough to see effects on outcomes such as BMD or fracture, which may need months to years.

Last, many of the intervention studies were potentially underpowered to detect any effect of supplementation, should one exist. However, it should be considered that the studies summarized in this review are the best evidence available at present. In the future, more long-term, homogeneous, adequately powered intervention studies looking at total protein and BMD and fracture in a set of clinically relevant outcomes (lumbar spine, femoral neck, and radius) are required.

Conclusions

A positive association between protein intake and BMD, BMC, and a reduction in bone resorption markers was indicated in the studies reviewed here. However, no separate effects of soy supplementation or MBP on lumbar spine BMD were found. However, the studies were highly heterogeneous from one another, and confounding may partly explain any positive effects of protein found in the cross-sectional surveys and cohort studies. Importantly, there was no relation between dietary protein and fracture risk in the qualitative review or meta-analysis.

Comparison: 01 All prote Outcome: 03 Soy prot	01 All protein 03 Soy protein versus Non-soy protein										
Study or sub-category	Treatment N Mean (SD)		N	Control Mean (SD)	WMD (random) 95% Cl	Weight %	WMD (random) 95% Cl				
03 Lumbar Spine BMD											
Alekel 2000 (65)	24	0.93(0.13)	21	0.99(0.13)	-	30.26	-0.06 [-0.14, 0.02]				
Kreijkamp-K 2004(76)	88	0.92(0.16)	87	0.89(0.17)	÷ .	43.11	0.03 [-0.02, 0.08]				
Potter 1998 (15)	22	0.97(0.14)	22	0.93(0.15)	+	26.63	0.04 [-0.05, 0.13]				
Subtotal (95% CI)	134		130		•	100.00	0.01 [-0.05, 0.06]				
Test for heterogeneity: Chr =	4.36, df = 2 (P	= 0.11), F = 54.1%			T C						
Test for overall effect: $7 = 0$	18 (P = 0.86)	1940									

FIGURE 4. The effect of soy protein supplementation on lumbar spine bone mineral density (BMD). WMD, weighted mean difference.

Review

Protein and Bone Health

Review: Comparison: Outcome:	Protein and Bone Health on: 01 All protein 04 MBP versus non-MBP								
Study or sub-category	/	N	Treatment Mean (SD)	N	Control Mean (SD)		WMD (fixed) 95% CI	Weight %	WMD (fixed) 95% Cl
01 Lumbar Spin	e BMD								
Aoe 2005 (67))	14	1.11(0.03)	13	1.09(0.03)		÷	95.07	0.02 [0.00, 0.04]
Uenishi 2007 ((80)	17	1.16(0.14)	18	1.13(0.16)		T	4.93	0.03 [-0.07, 0.13]
Subtotal (95% C	CI)	31		31				100.00	0.02 [0.00, 0.04]
Test for hetero	geneity: Chr = 0.04	, df = 1 (P	= 0.85), F = 0%				[
Test for overall	effect: Z = 1.82 (P	= 0.07)							
						10			

FIGURE 5. The effect of milk basic protein (MBP) supplementation on indexes of lumbar spine bone mineral density (BMD). WMD, weighted mean difference.

Overall, the weight of the evidence shows that the effect of dietary protein on the skeleton appears to be favorable to a small extent or, at least, is not detrimental. However, the long-term clinical importance of the effect is unclear, and a reduction in fracture risk was not seen. More research is required to resolve the protein debate. In the meantime the protein intakes and balance of different protein sources as indicated in the current healthy eating guidelines (eg, Balance of Good Health) represent appropriate dietary advice.

We express our sincere gratitude for the thoroughness of the *AJCN* reviewer process, which has considerably improved this manuscript.

The authors' responsibilities were as follows—ALD and SAL-N: design of review and data collection; ALD, DJT, CEH, DJM, and SAL-N: analysis of data; ALD and DJM: writing of the manuscript; and DJT, CEH, DJM, and SAL-N: review of the manuscript. None of the authors had a conflict of interest or received financial support for this work.

REFERENCES

- WHO. Scientific group meeting on the burden of musculoskeletal diseases: the bone and joint decade (2000-2010) 2000. Available from: http: //www.who.int/directorgeneral/speeches/2000/english/20000113_bone_ joint.html (cited 16 June 2008).
- WHO. Diet nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 2003;916:1–149.
- Millward DJ, Rivers JP. The need for indispensable amino acids: the concept of the anabolic drive. Diabetes Metab Rev 1989;5:191–211.
- 4. Rizzoli R, Bonjour JP, Chevalley T. Dietary protein intakes and bone growth. Bone 2007;International Congress Series 50–59.
- Rizzoli R, Ammann P, Chevalley T, Bonjour JP. Effects of dietary protein insufficiency on the skeleton. In: New SA, Bonjour JP, eds. Nutritional aspects of bone health. Cambridge, United Kingdom: Royal Society of Chemistry, 2003:194–212.
- Heaney RP, Layman DK. Amount and type of protein influences bone health. Am J Clin Nutr 2008;87(suppl):1567S–70S.
- Bonjour JP. Dietary protein: an essential nutrient for bone health. J Am Coll Nutr 2005;24:526S–36S.
- Roughead ZK. Is the interaction between dietary protein and calcium destructive or constructive for bone? J Nutr 2003;133:866S–9S.
- Ginty F. Dietary protein and bone health. Proc Nutr Soc 2003;62:867–76.
 Rizzoli R, Bonjour JP. Dietary protein and bone health. J Bone Miner
- Res 2004;19:527–31.
- Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser 2007;(935)1–265.
- 12. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 1995;95:791–7.
- Arnett TR, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 1986;119:119–24.
- Lemann J, Litzow JR, Lennon EJ. Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man. J Clin Invest 1967;46:1318–28.
- Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW Jr. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 1998;68(suppl):1375S–9S.

- Microsoft Microsoft Office Excel. Redmond, WA: Microsoft Corporation, 1985–2003.
- Manager R. RevMan, version 4.2 for Windows. Copenhagen, Denmark: The Nordic Cochrane Centre TCC, 2003.
- Wilson MW, Lipsey DB. Practical meta-analysis. London, United Kingdom: SAGE Publications Inc, 2001.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
- Moher D, Schultz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 2001;357:1191–4.
- Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995;273:408–12.
- Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Lancet 1999;354:1896–900.
- Chiu JF, Lan SJ, Yang CY, et al. Long-term vegetarian diet and bone mineral density in postmenopausal Taiwanese women. Calcif Tissue Int 1997;60:245–9.
- Cooper C, Atkinson EJ, Hensrud DD, et al. Dietary protein intake and bone mass in women. Calcif Tissue Int 1996;58:320–5.
- Devine A, Dick IM, Islam AF, Dhaliwal SS, Prince RL. Protein consumption is an important predictor of lower limb bone mass in elderly women. Am J Clin Nutr 2005;81:1423–8.
- Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone-mineral content of women 35-65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr 1986;44:863–76.
- Gregg EW, Kriska AM, Salamone LM, et al. Correlates of quantitative ultrasound in the Women's Healthy Lifestyle Project. Osteoporos Int 1999;10:416–24.
- Henderson NK, Price RI, Cole JH, Gutteridge DH, Bhagat CI. Bone density in young women is associated with body weight and muscle strength but not dietary intakes. J Bone Miner Res 1995;10:384–91.
- Hirota T, Nara M, Ohguri M, Manago E, Hirota K. Effect of diet and lifestyle on bone mass in Asian young women. Am J Clin Nutr 1992;55:1168–73.
- Ho SC, Woo J, Lam S, Chen Y, Sham A, Lau J. Soy protein consumption and bone mass in early postmenopausal Chinese women. Osteoporos Int 2003;14:835–42.
- Horiuchi T, Onouchi T, Takahashi M, Ito H, Orimo H. Effect of soy protein on bone metabolism in postmenopausal Japanese women. Osteoporos Int 2000;11:721–4.
- Ilich JZ, Brownbill RA, Tamborini L. Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. Eur J Clin Nutr 2003;57:554–65.
- 33. Jaime PC, Latorre Mdo R, Florindo AA, Tanaka T, Zerbini CA. Dietary intake of Brazilian black and white men and its relationship to the bone mineral density of the femoral neck. Sao Paulo Med J 2006; 124:267–70.
- Kyriazopoulos P, Trovas G, Charopoulos J, Antonogiannakis E, Galanos A, Lyritis G. Lifestyle factors and forearm bone density in young Greek men. Clin Endocrinol (Oxf) 2006;65:234–8.
- Lacey JM, Anderson JJ, Fujita T, et al. Correlates of cortical bone mass among premenopausal and postmenopausal Japanese women. J Bone Miner Res 1991;6:651–9.
- Lau EM, Kwok T, Woo J, Ho SC. Bone mineral density in Chinese elderly female vegetarians, vegans, lacto-vegetarians and omnivores. Eur J Clin Nutr 1998;52:60–4.

- Metz JA, Anderson JJ, Gallagher PN Jr. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr 1993;58:537–42.
- Michaelsson K, Holmberg L, Mallmin H, Wolk A, Bergstrom R, Ljunghall S. Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int 1995;57:86–93.
- 39. Nakamura K, Hori Y, Nashimoto M, et al. Dietary calcium, sodium, phosphorus, and protein and bone metabolism in elderly Japanese women: a pilot study using the duplicate portion sampling method. Nutrition 2004;20:340–5.
- Orwoll ES, Weigel RM, Oviatt SK, Meier DE, McClung MR. Serum protein concentrations and bone mineral content in aging normal men. Am J Clin Nutr 1987;46:614–21.
- Pedrera JD, Canal ML, Postigo S, Lavado J, Hernandez ER, Rico H. Phalangeal bone ultrasound and its possible correlation with nutrient in an area of high protein intake. Ann Nutr Metab 2001;45:86–90.
- 42. Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E. Protein consumption and bone mineral density in the elderly: the Rancho Bernardo Study. Am J Epidemiol 2002;155:636–44.
- Quintas ME, Ortega RM, Lopez-Sobaler AM, Garrido G, Requejo AM. Influence of dietetic and anthropometric factors and of the type of sport practised on bone density in different groups of women. Eur J Clin Nutr 2003;57(suppl 1)S58–62.
- Rapuri PB, Gallagher JC, Haynatzka V. Protein intake: effects on bone mineral density and the rate of bone loss in elderly women. Am J Clin Nutr 2003;77:1517–25.
- Tanaka M, Itoh K, Abe S, et al. Relationship between nutrient factors and osteo-sono assessment index in calcaneus of young Japanese women. Nutr Res 2001;21:1475–82.
- Teegarden D, Lyle RM, McCabe GP, et al. Dietary calcium, protein, and phosphorus are related to bone mineral density and content in young women. Am J Clin Nutr 1998;68:749–54.
- Tylavsky FA, Anderson JJ. Dietary factors in bone health of elderly lactoovovegetarian and omnivorous women. Am J Clin Nutr 1988;48:842–9.
- Wang MC, Luz Villa M, Marcus R, Kelsey JL. Associations of vitamin C, calcium and protein with bone mass in postmenopausal Mexican American women. Osteoporos Int 1997;7:533–8.
- 49. Weikert C, Walter D, Hoffmann K, Kroke A, Bergmann MM, Boeing H. The relation between dietary protein, calcium and bone health in women: results from the EPIC-Potsdam cohort. Ann Nutr Metab 2005;49:312–8.
- Whiting SJ, Boyle JL, Thompson A, Mirwald RL, Faulkner RA. Dietary protein, phosphorus and potassium are beneficial to bone mineral density in adult men consuming adequate dietary calcium. J Am Coll Nutr 2002;21:402–9.
- Lukert BP, Carey M, McCarty B, et al. Influence of nutritional factors on calcium-regulating hormones and bone loss. Calcif Tissue Int 1987;40: 119–25.
- Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 2000;15:2504–12.
- Geinoz G, Rapin CH, Rizzoli R, et al. Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos Int 1993;3:242–8.
- Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Protein consumption and bone fractures in women. Am J Epidemiol 1996;143:472–9.
- Meyer HE, Pedersen JI, Loken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians: a prospective study. Am J Epidemiol 1997;145:117–23.
- Munger RG, Cerhan JR, Chiu BC. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr 1999;69:147–52.
- Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES. Risk factors for hip fracture in white men: the NHANES I Epidemiologic Follow-up Study. J Bone Miner Res 1998;13:918–24.
- Thorpe DL, Knutsen SF, Beeson WL, Rajaram S, Fraser GE. Effects of meat consumption and vegetarian diet on risk of wrist fracture over 25 years in a cohort of peri- and postmenopausal women. Public Health Nutr 2008;11:564–72.
- 59. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 2001;73:118–22.
- Zhang X, Shu XO, Li H, et al. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med 2005;165:1890–5.

- Abelow BJ, Holford TR, Insogna KL. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 1992;50:14–8.
- Frassetto LA, Todd KM, Morris RC Jr, Sebastian A. Worldwide incidence of hip fracture in elderly women: relation to consumption of animal and vegetable foods. J Gerontol A Biol Sci Med Sci 2000;55: M585–92.
- Nieves JW, Grisso JA, Kelsey JL. A case-control study of hip fracture: evaluation of selected dietary variables and teenage physical activity. Osteoporos Int 1992;2:122–7.
- Wengreen HJ, Munger RG, West NA, et al. Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J Bone Miner Res 2004;19:537–45.
- Alekel DL, Germain AS, Peterson CT, Hanson KB, Stewart JW, Toda T. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 2000;72:844–52.
- 66. Aoe S, Toba Y, Yamamura J, et al. Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women. Biosci Biotechnol Biochem 2001;65:913–8.
- Aoe S, Koyama T, Toba Y, Itabashi A, Takada Y. A controlled trial of the effect of milk basic protein (MBP) supplementation on bone metabolism in healthy menopausal women. Osteoporos Int 2005;16:2123–8.
- 68. Arjmandi BH, Khalil DA, Smith BJ, et al. Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab 2003;88:1048–54.
- 69. Arjmandi BH, Lucas EA, Khalil DA, et al. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women. Nutr J 2005;4:8.
- Dalais FS, Ebeling PR, Kotsopoulos D, McGrath BP, Teede HJ. The effects of soy protein containing isoflavones on lipids and indices of bone resorption in postmenopausal women. Clin Endocrinol (Oxf) 2003;58:704–9.
- Dawson-Hughes B, Harris SS, Rasmussen H, Song L, Dallal GE. Effect of dietary protein supplements on calcium excretion in healthy older men and women. J Clin Endocrinol Metab 2004;89:1169–73.
- Ince BA, Anderson EJ, Neer RM. Lowering dietary protein to U.S. Recommended dietary allowance levels reduces urinary calcium excretion and bone resorption in young women. J Clin Endocrinol Metab 2004;89:3801–7.
- Jenkins DJ, Kendall CW, Vidgen E, et al. Effect of high vegetable protein diets on urinary calcium loss in middle-aged men and women. Eur J Clin Nutr 2003;57:376–82.
- Kerstetter JE, Mitnick ME, Gundberg CM, et al. Changes in bone turnover in young women consuming different levels of dietary protein. J Clin Endocrinol Metab 1999;84:1052–5.
- Khalil DA, Lucas EA, Juma S, Smith BJ, Payton ME, Arjmandi BH. Soy protein supplementation increases serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr 2002;132:2605–8.
- Kreijkamp-Kaspers S, Kok L, Grobbee DE, et al. Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 2004;292:65–74.
- Roughead ZK, Johnson LK, Lykken GI, Hunt JR. Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women. J Nutr 2003;133:1020–6.
- Tkatch L, Rapin CH, Rizzoli R, et al. Benefits of oral protein supplementation in elderly patients with fracture of the proximal femur. J Am Coll Nutr 1992;11:519–25.
- Toba Y, Takada Y, Matsuoka Y, et al. Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men. Biosci Biotechnol Biochem 2001;65:1353–7.
- Uenishi KIH, Toba Y, Aoe S, Itabashi A, Takada Y. Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporos Int 2007;18:385–90.
- Yamamura J, Aoe S, Toba Y, et al. Milk basic protein (MBP) increases radial bone mineral density in healthy adult women. Biosci Biotechnol Biochem 2002;66:702–4.
- Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998;128:801–9.
- 83. Hegsted DM. Calcium and osteoporosis. J Nutr 1986;116:2316-9.

彮